localhost

Meshedit

8-10 minutes

The live version of the website is hosted on:

https://minospark.com/cs184/projects/meshedit

Overview

Give a high-level overview of what you have implemented in this assignment. Think
about what you have built as a whole. Share your thoughts on what interesting things
ou have learned from completing this assignment.

m

In this assignment, we were given a skeleton of a mesh editor. A mesh is a topological

representation of an object in computer graphics pipeline.

The tasks in the assignment (task 3 and onwards) involve manipulating the mesh
elements and implement some basic operations like edge flipping, edge splitting, and

upsampling of the mesh.
In task 1 and 2 we implement bezier curve, and surface approximation through de
Casteljau algorithm.

With the tasks in the assignment completed, we have a working MeshEditor that can
render . dae files containing polygon mesh representations and allows a user to
visualize the mesh operations that were implemetned as part of the assignment.

Mesh elements are represented in the code as a std: : list<types>. Although the
assignment attempted, and abstracted away most of the intricacies of the C++, | still got
to experience the delicacy of manipulating the elements in the memory. It was fun!

Task 1

Briefly explain de Casteljau’s algorithm and how you implemented it in order to evaluate
Bezier curves.

We are given N elements as the initial control points as a parameter for the function
BezierCurve::evaluateStep(...) which on each call evalutes each step in the
de Casteljau’s algorithm.

The de Casteljau’s algorithm works by obtaining N-1 points from N points in each step of
the algorithm, until we reach a single point. N-1 points are obtained by interpolating the

adjacent points in the input list.

Interpolation parameter t is evaluated from 0O to 1, and the point calculated from the
algorithm is used to draw the final curve

We implement the above said function BezierCurve: :evaluateStep(...) inthe
assignment.

Take a look at the provided .bzc files and create your own Bezier curve with 6 control
points of your choosing. Use this Bezier curve for your screenshots below.

Show screenshots of each step / level of the evaluation from the original control points
down to the final evaluated point. Press E to step through. Toggle C to show the

completed Bezier curve as well.

I've created another . bzc file that has 6 control points, and took screenshots of how the
Bezier curve turned out.

CCL: BeZlar Curve

imgflip.com

Bezier curve - animated

Show a screenshot of a slightly different Bezier curve by moving the original control
points around and modifying the parameter via mouse scrolling.

Also please see the above gif! The control points are moved in the below images from
the gif version.

CGL: Bezier Curve

Bezier curve - moved

CGL: Bezier Curve

Bezier curve - moved again

Task 2

Briefly explain how de Casteljau algorithm extends to Bezier surfaces and how you
jmplemented it in order to evaluate Bezier surfaces.

Intuitively, we evaluate Bezier curves along one “grain”. N x 1 control points are
evaluated in the method BezierPatch::evaluatelD(...) which repeated calls
BezierPatch::evaluateStep(...). Thenthe N points along the other “grain” of
the patch are evaluated as the control points. The resulting evaluated curve is a slice of
the final Bezier surface, and we continue the same until we have a whole surface which
is implemented in BezierPatch: :evaluate(...).

Show a screenshot of bez/teapot.bez (not .dae) evaluated by your implementation.

CGL: MeshEdit

No Mesh Feature is selected.

bez/teapot.bez

Task 3

Briefly explain how you implemented the area-weighted vertex normals.

The area-weighted vertex normal is obtained by traversing the triangles around a vertex
and as the name suggests, by calculating the area-weighted normals.

Each face class of a triangle contains a unit face normal, computed via the area
vector as the comment mentions in the code.

To get to the normal of the face, we have to traverse the triangles with halfedge
elements. From the vertex parameter input to the class method
Vertex::normal(...), we take one of the halfedge that originates from the vertex.
Using twin() and next () of the halfedge, we can move to the next triangle until we
reach back the original triangle—this is a nice property of 2D manifold that we utilize.
Using face () we can access the face element of that halfedge.

Show screenshots of dae/teapot.dae (not .bez) comparing teapot shading with and
ithout vertex normals. Use Q to toggle default flat shading and Phong shading.

CGL: MeshEdit

No Mesh Feature is selected.

Teapot shading with area-weighted vertex normals

CGL: MeshEdit

No Mesh Feature is selected.

Teapot with the default flat shading

Task 4

Briefly explain how you implemented the edge flip operation and describe any
interesting implementation / debugging tricks you have used.

Conceptually, the edge flip is quite intuitive and simple. To implement it in the mesh data
structure, is another story.

This task is the first task in the assignment that has involved pointer access operation.
To translate that abstract concept into the code, it was helpful to one-by-one, link the
concept to element in the mesh data structure.

The implementation is quite simple, after checking whether the edge is a boundary
edge, reassign all the necessary components correctly and the meshEdit visualizer will
correctly draw the result.

Show screenshots of a mesh before and after some edge flips.

CGL: MeshEdit

No Mesh Feature is selected.

Before the edge flips

CGL: MeshEdit

No Mesh Feature is selected.

After the edge flips

Mrite about your eventful debugging journey, if you have experienced one.

The journey was a bit straightfoward, thankfully. The biggest thing that helped, as
recommended by the project specification, was to draw out the elements that need to be
updated when the edge is flipped.

Task 5

Briefly explain how you implemented the edge split operation and describe any
interesting implementation / debugging tricks you have used.

The implementation of the edge split operation is similar in nature to the Task 4,
however, this operation involves introduction of some new elements into the mesh data
structure representation.

I've used the following diagram using asciif low.com to guide whether a correct set of
the new elements were introduced, and whether the re-assignments were done
correctly. Having a visual representation to go with the code was helpful.

//
// +
// X |
// |
// X ~
// ||
// X | |
// h2 | |
// X ||
// newh3 + |
|

+ newh6
| X

// <mmmmmme - + A
// X ||
// newfl newh2| | |newhl newf2
/ X 1 X
/ | lel]
/1 X + | v X
// |
// X |

+

//

X

Show screenshots of a mesh before and after some edge splits.

CGL: MeshEdit

No Mesh Feature is selected.

Before the edge splits

CGL: MeshEdit

After the edge splits

Show screenshots of a mesh before and after a combination of both edge splits and
edge flips.

CGL: MeshEdit

CGL: MeshEdit

After the edge splits and flips

Mrite about your eventful debugging journey, if you have experienced one.

This task was a bit more involved, but the Halfedge class method
setNeighbors(...) helped a lot in saving lines of pointer traversal. The initial
Implementation seemed to work, but after splitting multiple edges, some of the
previously splitted adjacent triangles suddenly lost faces.

| tracked down the issue to not setting the existing halfedges’ face address to the new
faces that were introduced while splitting an edge.

