
localhost

Rasterizer

13-16 minutes

Note: The webpage is hosted on a server that I host other

webpages that I create. https://minospark.com/cs184/projects

/rasterizer

Overview

Give a high-level overview of what you implemented in

this project. Think about what you’ve built as a whole.

Share your thoughts on what interesting things you’ve

learned from completing the project.

With this project, I learned about the rasterization

process in the graphics pipeline. We were expected to

implement the rasterization of triangles, supersampling

feature to reduce the jaggies, and various ways to set

the color of each pixels in the rasterized triangle.

I’ve found the direct application of math and geometry

fascinating. The project was especially rewarding as

the feedback on whether the implementation is correct

is immediate and visual.

I attach the following as an interesting memeory while

progressing through the project.

Task 1

Walk through how you rasterize triangles in your own

words. Explain how your algorithm is no worse than

one that checks each sample within the bounding box

of the triangle. Show a png screenshot of

basic/test4.svg with the default viewing parameters and

with the pixel inspector centered on an interesting part

of the scene.

When sampling the pixels, I check the bounding box of

a triangle rather than the whole screen. I made a bit of

optimization in the extra credit section, reducing the

times the pixel sampling routine is called.

The part that is zoomed in is interesting because we

can see the jaggies and an isolated point in what

seemingly should be a solid red triangle. As we will find

out, in the task 2 we will implement a supersampling

method to reduce these artifacts.

Each pixels in the bounding box is checked for its

inclusion in the triangle being evaluated. To check the

wether the pixel that’s sampled is within the triangle, a

three line test is performed as described in the lecture.

When all three tests confirm a point is within the

triangle, fill_pixel function is called with the color

we want to fill the pixel with, which writes the

information to the frame buffer.

Extra credit: Explain any special optimizations you did

beyond simple bounding box triangle rasterization, with

a timing comparison table (we suggest using the c++

clock() function around the svg.draw() command in

DrawRend::redraw() to compare millisecond timings

with your various optimizations off and on).

The code for extra credit portion of the Task 1 can be

found under the task1_extracredit branch. The

performance data can be found in this document under

Attachments > Task 1 Extra Credit Data.

I initially implemented the bounding box checking

method to ensure we are not sampling the whole

screen for every triangle. From there, I wanted to use

the fact that within the bounding box, we know there

are strides of continuous hits that are bound to happen

due to the geometry of triangle (it’s convex).

So I made a stride parameter and adapted the point

evaluation loop in the code base to adjust accordingly.

When the mechanism detects the strides, instead of

checking each sample points, it processes the stride

without sample all of the elements within the stride.

I’ve included the results of the strides of 4 and 8.

Interestingly, when stride was set to 8 the performance

worsened, and that likely is due to lowered stride hit

rates thus increased overhead with small triangles.

Results: With the image rendered with 4 unit stride

mechanism, basic/test6.svg saw 7.2%

improvement in rendering time, and

basic/test3.svg saw 4.32% improvement in

rendering time.

Note: there are variations in the execution time on a

real machine - the performance metric could be

improved to run 1000 times and report an average and

a standard deviation of the execution times.

Also Note: the initial implementation of the line

evaluation was not so poor! So small percentage

improvement is expected!

You can see the stride operation in the below right

image, obtained by only coloring the long strides. On

the left side, we could see the original bounding box

evaluation scheme. If the image is too small, right-click

and view the images separately in a new window.

Task 2

Walk through your supersampling algorithm and data

structures. Why is supersampling useful? What

modifications did you make to the rasterization pipeline

in the process? Explain how you used supersampling

to antialias your triangles.

Supersampling allows for the cases where an edge of

the triangle is not quite covering the full surface of a

pixel which can lead to ‘jaggies’ on the screen. See

below image “Supersampling Rate: 1”.

supersample_buffer vector data structure which

holds ‘arrays’ of Color structs is used to hold the Color

values before being combined/average and drawn onto

the frame buffer. The supersample_buffer needs to

be updated every time, the supersampling rate changes

by an user input, or when the screen size changes.

The Task 1 code (rasterize_triangle) was

updated to evaluate the triangles at sub-pixel level.

Instead of calling fill_pixel when the sample needs

to be filled, fill_supersample function is called

instead. unsigned int sample_rate is used to

dynamically adjust the sub-pixel sampling loop.

After the rasterization into the supersample_buffer

is done, the resolve_to_framebuffer function is

called to resolve supersampled values at a pixel, and

draw the pixel onto the screen by writing to the frame

buffer.

Show png screenshots of basic/test4.svg with the

default viewing parameters and sample rates 1, 4, and

16 to compare them side-by-side. Position the pixel

inspector over an area that showcases the effect

dramatically; for example, a very skinny triangle corner.

Explain why these results are observed.

As one can observe below, as the supersampling rate

increases, we can see each pixels around the rough

jaggied area getting blurred. This is the artifact of

samplling at granular level than 1 per pixel and

combining (or ‘blend in’) the results to render that single

pixel.

Supersamping Rate: 1

Supersamping Rate: 4

Supersamping Rate: 16

Task 3

Create an updated version of svg/transforms/robot.svg

with cubeman doing something more interesting, like

waving or running. Feel free to change his colors or

proportions to suit your creativity. Save your svg file as

my_robot.svg in your docs/ directory and show a png

screenshot of your rendered drawing in your write-up.

Explain what you were trying to do with cubeman in

words.

A robot is waving hello. He also got a CPU upgrade

(bigger head). I initially implemented the robot

incorrectly as the trig functions in gcc takes radian, but

the transform functions in the codebase uses degrees.

Link to robot waving SVG file: Here

I rotated the arm components so that it looks like robot

is waving, and translated and scaled the head to be big!

A big brain robot waving hello

Task 4

Explain barycentric coordinates in your own words and

use an image to aid you in your explanation. One idea

is to use a svg file that plots a single triangle with one

red, one green, and one blue vertex, which should

produce a smoothly blended color triangle.

As one can see below, each triangle’s corners are

colored red, green and blue. With barycentric

coordinate, we can interpolate the values within (and

outside, but we are interested in the inner side*) the

triangle. In the example below, the colors on the each

corners are interpolated and inner pixels of the triangles

are filled appropriately.

*when the barycentric coordinates are all positive

Barycentric coordinate visualized

Show a png screenshot of svg/basic/test7.svg with

default viewing parameters and sample rate 1. If you

make any additional images with color gradients,

include them.

test7.svg with default viewing params and sample rate

1

Task 5

Explain pixel sampling in your own words and describe

how you implemented it to perform texture mapping.

Briefly discuss the two different pixel sampling

methods, nearest and bilinear.

To pixel sample, for each screen sample with

barycentric coordinate, evaluate the texture coordinate

and sample the texture. For the nearest method, once

you evaluate the texture coordinate, round the value to

the nearest pixel in the texture coordinate. For the

bilinear method, once you evaluate the texture

coordinate, interpolate the colors between four pixels

around the sample point as described in the lecture.

We use the zero level of the mipmap (the full texel

resolution) to render the images in this task and this

could lead to aliasing, but that will be dealt in task 6.

Check out the svg files in the svg/texmap/ directory.

Use the pixel inspector to find a good example of where

bilinear sampling clearly defeats nearest sampling.

Show and compare four png screenshots using nearest

sampling at 1 sample per pixel, nearest sampling at 16

samples per pixel, bilinear sampling at 1 sample per

pixel, and bilinear sampling at 16 samples per pixel.

texmap example - with nearest sampling at 1

texmap example - with nearest sampling at 16

texmap example - with bilinear sampling at 1

Even at sampling rate 1, the quality of texture shown on

the pixel magnifier is much better compared to the

nearest sampling. The white line is much more

continuous.

texmap example - with bilinear sampling at 16

Comment on the relative differences. Discuss when

there will be a large difference between the two

methods and why.

Task 6

Explain level sampling in your own words and describe

how you implemented it for texture mapping.

Depending on the screen pixel footprint, if there are

more texture foot print we will see the aliasing effects.

To mitigate this we can use different resolution “levels”

that matches the screen sampling rate.

In the texture struct, the vector mipmap holds an array

of MipLevel struct which holds the resolution

information and texel data.

In the get_level function in the Texture class, the

appropriate mipmap level is calculated. Depending on

the chosen level sampling method, the Color at the

sample point is calculated accordingly to be passed

onto fill_supersample function.

If the bilinear sampling method is chosen for the level

sampling method, the color data from two levels

adjacent to the floating value level calculated from

get_level are used to interpolate the final color data.

You can now adjust your sampling technique by

selecting pixel sampling, level sampling, or the number

of samples per pixel. Describe the tradeoffs between

speed, memory usage, and antialiasing power between

the three various techniques.

Number of samples per pixel has a direct impact on the

speed and memory usage. As the sampling rate

increases the memory usage increases and the speed

decreases as processing one screen pixel requires

much more computation and space.

Level sampling requres more memory as it has to store

extra mipmap structure in the memory and the storage

overhead. It yields excellent antialiasing results.

Pixel sampling does not impact memory usage as

much as other techniques. It does impact the speed as

bilinear sampling requires more floating point

calculations per pixel.

Using a png file you find yourself, show us four

versions of the image, using the combinations of

L_ZERO and P_NEAREST, L_ZERO and P_LINEAR,

L_NEAREST and P_NEAREST, as well as

L_NEAREST and P_LINEAR.

new york city sunset - L_ZERO and P_NEAREST

new york city sunset - L_ZERO and P_LINEAR

A small improvement can be observed, the color tones

are more accurate in the P_LINEAR case.

new york city sunset - L_NEAREST and P_NEAREST

The big Moire pattern on the left most building is gone,

compared L_ZERO images.

new york city sunset - L_NEAREST and P_LINEAR

Attachments

Initial implementation

dev322@dev322:~/workfolder/cs184/p1-

rasterizer-su20-minos-cs184/build$./draw

../svg/basic/test6.svg

Task1 triangle rasterization duration:

0.00108051

dev322@dev322:~/workfolder/cs184/p1-

rasterizer-su20-minos-cs184/build$./draw

../svg/basic/test3.svg

Task1 triangle rasterization duration:

0.0114734

Stride 4 example using rasterize_point on hits

rather than rasterize_line which had whole lot of

over head, skipping remainders (incorrect view)

dev322@dev322:~/workfolder/cs184/p1-

rasterizer-su20-minos-cs184/build$./draw

../svg/basic/test6.svg

Task1 triangle rasterization duration:

0.000796006

dev322@dev322:~/workfolder/cs184/p1-

rasterizer-su20-minos-cs184/build$./draw

../svg/basic/test3.svg

Task1 triangle rasterization duration:

0.00884895

Stride 4, same as above with remainders (correct

view)

dev322@dev322:~/workfolder/cs184/p1-

rasterizer-su20-minos-cs184/build$./draw

../svg/basic/test6.svg

Task1 triangle rasterization duration:

0.00100167

(0.00100167-0.00108051)/0.00108051*100

== 7.2% improvement compared to initial

dev322@dev322:~/workfolder/cs184/p1-

rasterizer-su20-minos-cs184/build$./draw

../svg/basic/test3.svg

Task1 triangle rasterization duration:

0.0109772

(0.0109772-0.0114734)/0.0114734*100 ==

4.32% improvement compared to initial

with stride 8 (worse performance)

dev322@dev322:~/workfolder/cs184/p1-

rasterizer-su20-minos-cs184/build$./draw

../svg/basic/test6.svg

Task1 triangle rasterization duration:

0.00115052

dev322@dev322:~/workfolder/cs184/p1-

rasterizer-su20-minos-cs184/build$./draw

../svg/basic/test3.svg

Task1 triangle rasterization duration:

0.0123532

